
Spectral Functions of Strongly Interacting Isospin- 12 Bosons in One Dimension

K.A. Matveev1 and A. Furusaki2

1Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan

(Received 30 July 2008; published 23 October 2008)

We study a system of one-dimensional (iso)spin- 12 bosons in the regime of strong repulsive interactions.

We argue that the low-energy spectrum of the system consists of acoustic density waves and the spin

excitations described by an effective ferromagnetic spin chain with a small exchange constant J. We use

this description to compute the dynamic spin structure factor and the spectral functions of the system.
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Physics of one-dimensional Fermi systems has long
attracted the interest of both theorists and experimentalists.
Interactions between particles have a strong effect on the
properties of these systems. Interacting fermions form the
so-called Luttinger-liquid state [1], whose excitations are
bosons with acoustic spectrum, "ðqÞ / jqj. Recently it has
become possible to confine ultracold gases of bosons to
elongated traps [2,3], effectively creating systems of one-
dimensional bosons. The properties of interacting one-
dimensional spinless bosons are in many respects similar
to those of spinless fermions. In particular, they too form a
Luttinger-liquid state at low energies.

In a recent experiment [4] bosons with two internal
degrees of freedom, which can be viewed as components
of (iso)spin- 12 , were confined to one dimension. For spin- 12
particles the difference between the Bose and Fermi sta-
tistics is of fundamental importance. Indeed, spin-
independent interactions between one-dimensional bosons
favor ferromagnetic spin ordering [5], whereas for fermi-
ons the ground state spin is zero [6]. As a result, the low-
energy spin excitations of the boson system are magnons
with quadratic spectrum "ðqÞ / q2, and the system is no
longer a Luttinger liquid.

In the absence of the effective theory of interacting
spin- 12 bosons in one dimension, considerable progress

has been made recently by focusing on the regime of
very strong repulsive interactions [7,8]. In this Letter we
show that this regime allows for a remarkably simple
theoretical description, in which there are two types of
low-energy excitations: acoustic density waves and the
spin excitations described by a one-dimensional
Heisenberg model with a very small ferromagnetic ex-
change constant J. The theory is applied to the calculation
of the dynamic spin structure factor and the spectral func-
tions of the system. Unlike Refs. [7,8], our conclusions are
not limited to spin excitations of small momentum q ! 0.
In addition, although the frequency ! is assumed to be
small compared to the typical kinetic energy of the bosons
EF � ð@nÞ2=m, it can be of order of the small exchange
constant J. (Here n is the one-dimensional density of
bosons and m is their mass.)

The model we consider is that of one-dimensional
(iso)spin- 12 bosons interacting with repulsive spin-

independent potential Vðx� yÞ. For simplicity, we con-
centrate on the most realistic regime of short-range inter-
actions, Vðx� yÞ ¼ g�ðx� yÞ; the generalization to the
case of finite-range repulsion is relatively straightforward.
The strong repulsion regime is achieved at � � 1, where
� ¼ mg=@2n is the dimensionless interaction strength.
As the first step, we show that at low energies the

excitation spectrum of the system consists of independent
phonon and magnon excitations. This effect is essentially
equivalent to the well-known spin-charge separation in
interacting one-dimensional electron systems [9]. Our ar-
guments follow the discussion [10,11] of that phenomenon
in the limit of strong repulsion.
In the Tonks-Girardeau limit � ! þ1 the repulsion

effectively forbids any two particles to occupy the same
point in space, regardless of their spin. Thus the density
excitations of the system are those of a gas of spinless hard-
core bosons, or, equivalently, those of noninteracting gas of
spinless fermions [12], where the same constraint is en-
forced by the Pauli principle. It is convenient to treat the
low-energy excitations of one-dimensional spinless Bose
and Fermi systems in the framework of the hydrodynamic
approach [1] and write the Hamiltonian in the form

Hph ¼
@u�

2�

Z
½Kð@x�Þ2 þ K�1ð@x�Þ2�dx: (1)

Here � and � are bosonic fields satisfying the standard
commutation relation ½�ðxÞ; @y�ðyÞ� ¼ i��ðx� yÞ. The

Luttinger-liquid parameter K and the phonon velocity u�
are determined by the interactions. In the case of hard-core
bosons K ¼ 1, while the effective ‘‘Fermi velocity’’ u� ¼
�@n=m.
In the limit � ! þ1 any collision of two bosons results

in perfect backscattering. As a result the bosons become
distinguishable particles. Indeed, if boson 1 is to the left of
boson 2, i.e., x1 < x2 at some moment in time, then this
property cannot be changed as a result of any collisions
between particles. Thus one can number all particles by an
integer l in accordance with their positions along the x axis.
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In this limit the spins of the bosons do not interact, and
each state ofN bosons is 2N-fold degenerate. A coupling of
the spins appears only when � is finite. At � � 1 a
collision of two bosons, l and lþ 1, may result in their
forward scattering, in which case the particles exchange
their spins. Since for spin- 12 particles the spin permutation

operator Pl;lþ1 can be expressed as Pl;lþ1 ¼ 2Sl � Slþ1 þ
1=2, this gives rise to coupling of the spins of the nearest-
neighbor particles:

H� ¼ �X
l

JSl � Slþ1: (2)

Thus at � � 1 the low-energy excitations of the system are
given by the acoustic phonons, described by the Hamil-
tonian (1) and the spin excitations of the Heisenberg
Hamiltonian (2).

A similar separation of the density and spin excitations
is well known in the case of strongly interacting one-
dimensional fermions, where it was first derived [13]
from the exact solution of the infinite-U Hubbard model.
The sign of the exchange constant J is determined by the
requirement to either symmetrize or antisymmetrize the
wave function with respect to the permutation xl $ xlþ1;
the coupling is antiferromagnetic for fermions, J < 0, and
ferromagnetic for bosons, J > 0. On the other hand, the
magnitude of the exchange constant J is determined by the
amplitude of the forward scattering of two neighboring
particles, regardless of their statistics. Thus we find the
same value of J as in the case of fermions with strong
short-range repulsion,

J ¼ 2�2

3

@
2n2

m�
; (3)

see Eq. (22) of Ref. [10]. The effective theory (2) and (3) of
the spin subsystem is consistent with the recent thermody-
namic Bethe ansatz results [14].

The Hamiltonian describing all the low-energy excita-
tions of the system is the sum Hph þH�. An important

assumption in its derivation was that all the relevant energy
scales in the problem, such as the temperature T, are small
compared to the bandwidth (the ‘‘Debye frequency’’) of
the phonons EF. In the following we limit our discussion to
the most interesting case of T ¼ 0.

The ground state of the ferromagnetic spin chain (2) is
fully spin polarized. The excitations near this state, the
magnons, have the well-known spectrum

"ðQÞ ¼ Jð1� cosQÞ; (4)

where Q is the wave vector defined with respect to the
lattice of the spin chain (2) and varying in the range��<
Q<�. Since the spins are attached to particles filling the
real space with density n, the physical momentum of the
magnon is p ¼ @nQ [15,16]. In the limit of small p, the
spectrum (4) is quadratic, "ðpÞ ¼ p2=2m�. Using Eq. (3),
one finds the effective mass m� ¼ ð3=2�2Þ�m, in agree-
ment with the result of Ref. [17].

Let us now illustrate our approach based on the separa-
tion of the density and spin excitations in the form (1) and
(2) by calculating the dynamic spin structure factor

S?ðq;!Þ ¼
Z dxdt

2�
e�iqxþi!thSþðx; tÞS�ð0; 0Þi: (5)

Here SðxÞ is the spin density operator, S� ¼ Sx � iSy, and
the expectation value h. . .i is evaluated in the fully polar-
ized ground state of the system, with the polarization
assumed to be directed in the positive z direction.
We start by expressing the spin density operator SðxÞ in

terms of the particle density operator nðxÞ and the spin
operator Sl,

S ðxÞ ¼ nðxÞSlðxÞ: (6)

Here lðxÞ is the operator of the number of particles to the
left of point x, i.e., @xlðxÞ ¼ nðxÞ. Its presence in Eq. (6)
accounts for the fact that the operator SðxÞ acts on site l of
the spin chain (2) attached to the boson at point x; cf. [11].
The problem of zero-temperature properties of strongly

interacting bosons is considerably simpler than that of
fermions [11], because of the simplicity of the ground state
of the ferromagnetic Heisenberg model (2) and its single-
particle excitation spectrum (4). In particular, the correla-
tor hSþl S�l0 i� for the spin chain (2) is easily found as

hSþl ðtÞS�l0 ð0Þi� ¼
Z dQ

2�
eiQðl�l0Þ�i�ðQÞt; (7)

where �ðQÞ ¼ "ðQÞ=@ is given by Eq. (4). Substituting
Eq. (6) into (5) and using (7), we find

S?ðq;!Þ ¼
Z dxdtdQ

ð2�Þ2 e�iqxþi½!��ðQÞ�t

� heiQ½lðx;tÞ�lð0;0Þ�nðx; tÞnð0; 0Þiph: (8)

The expectation value h. . .iph is performed in the ground

state of the phonon Hamiltonian (1). To evaluate it, we use
the standard hydrodynamic expression for particle density
nðxÞ ¼ nþ 1

� @x�ðxÞ, and the resulting expression for the

particle number

lðxÞ ¼ nxþ 1

�
�ðxÞ: (9)

In the low-energy limit one can neglect the @x� correction
to nðxÞ, and replace it with the average value n. However, it
is important to include the field � in Eq. (9) when evaluat-
ing the exponential in the second line of Eq. (8). The latter
calculation is performed using the standard techniques [1],
resulting in

heiQ½lðx;tÞ�lð0;0Þ�iph ¼ einQx

½ð1þ iDtÞ2 þ ðDx=u�Þ2�ðQ=2�Þ2 ;

(10)

where D� EF=@ is the phonon bandwidth.
In the denominator of Eq. (10) one can neglect x com-

pared to u�t. Indeed, to this approximation one finds that

PRL 101, 170403 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

24 OCTOBER 2008

170403-2



Eq. (10) falls off at Q� 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðDtÞp

, resulting in the esti-

mate x� 1=nQ� ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðDtÞp

=n 	 u�t; cf. [8,18]. The re-

maining calculation is straightforward, and one finds

S?ðq;!Þ ¼ #ð!��ðq=nÞÞ
�ðq2=2�2n2Þ

n

D

�
�
!��ðq=nÞ

D

�
q2=ð2�2n2Þ�1

: (11)

Here #ð!Þ is the unit step function. Its presence in Eq. (11)
expresses the obvious fact that the minimum energy of a
spin excitation with momentum q is "ðq=nÞ, Eq. (4).

The structure factor (5) is essentially a Fourier transform
of the correlation function G?ðx; tÞ discussed recently by
Zvonarev, Cheianov, and Giamarchi [8]. Their treatment is
limited to the regime q 	 n; in which case our results are
consistent with Eqs. (13) and (14) of Ref. [8]. On the other
hand, our calculations show interesting behavior at larger
q, especially the additional features at ! 	 J=@ and q 

�2�n, �4�n, . . ..

We now apply our technique to the calculation of the
single-particle spectral functions of the system

Aþ
s ðq;!Þ ¼

Z dxdt

2�
e�iqxþi!thc sðx; tÞc y

s ð0; 0Þi; (12)

A�
s ðq;!Þ ¼

Z dxdt

2�
e�iqxþi!thc y

s ð0; 0Þc sðx; tÞi; (13)

where c sðxÞ is the annihilation operator of bosons with
spin s ¼" , # .

As discussed above, at strong repulsion (� ! þ1) the
density excitations of the system are identical to those of a
gas of spinless hard-core bosons, whose density
�yðxÞ�ðxÞ equals the true particle density nðxÞ. (Here �
is the annihilation operator of the hard-core bosons.) Then,
assuming that the ground state is polarized in the positive z
direction, one concludes that operator c " simply destroys a

hard-core boson, i.e., c "ðxÞ ¼ �ðxÞ. In the low-frequency

regime! 	 D the spectral functions A�
" ðq;!Þ can then be

obtained in the framework of the hydrodynamic approach
based upon the Hamiltonian (1) withK ¼ 1. In this method
the annihilation operator � is expressed in terms of the
bosonic fields entering the Hamiltonian (1) as

�ðxÞ ¼ ffiffiffi
n

p
e�i�ðxÞ þ ffiffiffi

n
p

e�i�ðxÞ X1
j¼1

½ei2�jlðxÞ þ e�i2�jlðxÞ�:

(14)

Here one should use the hydrodynamic form (9) of the
particle number operator lðxÞ.

Compared to the first term in the right-hand side of
Eq. (14), the remaining ones are formally irrelevant;
i.e., their contribution to the observable quantities is ex-
pected to show additional power-law suppression at low
energies. The reason for writing the full expression (14)
is that this form accounts for the discreteness of particles

by enforcing the condition of lðxÞ being integer [1,19].
As a result, at ! 	 D� nu� the spectral function

A"ðq;!Þ ¼ Aþ
" ðq;!Þ þ A�

" ðq;!Þ shows not only the ex-

pected feature near q ¼ 0, but also weaker features at q ¼
�2�n, �4�n, . . .,

A"ðq;!Þ ¼ X1
j¼�1

�1Ajjj
�nu

#ð!2 � u2ðq� 2�jnÞ2Þ
�ððj� 1

2Þ2Þ�ððjþ 1
2Þ2Þ

�
�j!� uðq� 2�jnÞj

2�nu

�ðj�ð1=2ÞÞ2�1

�
�j!þ uðq� 2�jnÞj

2�nu

�ðjþð1=2ÞÞ2�1
: (15)

The hydrodynamic approach does not enable one to obtain
the numerical coefficients �1 and Aj. To find them, one

can compare the equal-time Green’s function computed
within this approach with the exact results [20–22]. This
results in �1 ¼ 0:924 18, A0 ¼ 1, A1 ¼ 1=16,
A2 ¼ 9=216,. . ..
In this Letter we are primarily interested in the spectral

function Aþ
# , because unlike A

�
" , it is sensitive to the non-

trivial spin properties of the system. (The other spin- #
spectral function, A�

# , obviously vanishes.) To evaluate

Aþ
# ðq;!Þ, one needs to express the operator c #ðxÞ in terms

of the density and spin variables entering the Hamiltonians
(1) and (2). Following the ideas of Refs. [11,16] we iden-
tify

c #ðxÞ ¼ �ðxÞZlðxÞ;#: (16)

The presence of the hard-core boson operator � accounts
for the change in the total number of particles in the
system, when a particle with spin- # is destroyed. In addi-
tion, the number of sites in the spin chain (2) reduces by
one. This effect is accounted for by the operator Zl;#, which
by definition removes a site at position l in the spin chain,
provided that the spin at that site is # . (Otherwise, the result
is zero.)
In the fully spin-polarized state of an infinite spin chain

(2), the correlator hZl#Z
y
l0#i� coincides with the spin-spin

correlator (7). Then the substitution of Eq. (16) into (12)
gives

Aþ
# ðq;!Þ ¼

Z dxdtdQ

ð2�Þ2 e�iqxþi½!��ðQÞ�t

� h�ðx; tÞeiQ½lðx;tÞ�lð0;0Þ��yð0; 0Þiph: (17)

To evaluate the expectation value in the ground state of the
Hamiltonian (1), we use the hydrodynamic theory expres-
sion (14) for the hard-core boson operator. Upon substitu-
tion of Eq. (14) into (17), the effect of the j � 0 terms
amounts to the extension of the range of Q-integration
from (��, �) to (�1, þ1). Then the correlator in the
second line of Eq. (17) is computed with the help of the
relation
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he�i�ðx;tÞþiQlðx;tÞei�ð0;0Þ�iQlð0;0Þiph
¼ eiQnx

½iDðt� x=u�Þ þ 1��þ
Q ½iDðtþ x=u�Þ þ 1���

Q

(18)

with ��
Q ¼ ðQ=�� 1Þ2=4, obtained using the standard

techniques [1].
Similarly to our derivation of the dynamic spin structure

factor (11), at low frequencies one can neglect the
x-dependence in the denominator of Eq. (18) and find

Aþ
# ðq;!Þ ¼ #ð!��ðq=nÞÞ

�ðq2=2�2n2 þ 1=2Þ
1

D

�
�
!��ðq=nÞ

D

�
q2=ð2�2n2Þ�1=2

: (19)

This expression is the main result of our Letter. It is worth
noting, that similarly to the case of A"ðq;!Þ, Eq. (15), the
hydrodynamic approach does not enable one to accurately
determine the prefactor in Eq. (19), whose calculation at
this time remains an open problem.

The spectral function Aþ
# ðq;!Þ is defined as the Fourier

transform (12) of the spin- # boson Green’s function. The
latter was discussed recently by Akhanjee and
Tserkovnyak [7]. Their theory focused on the Jt ! 1
limit, and accounted only for the long-wavelength mag-
nons, q 	 n. Calculating the inverse Fourier transform of
Eq. (19) under these assumptions, we get

hc #ðx; tÞc y
# ð0; 0Þi ¼

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�DJ=@

p 1

itþ 0
exp

�
i@n2x2

2Jt

�
:

(20)

Comparison with the considerably more complicated
Green’s function given by Eq. (7) of Ref. [7] shows the
same oscillating exponential factor (up to a missing �2 in
their exponent). Further, assuming jxj 	 u�t in the result

of Ref. [7], we find that their prefactor is consistent with
our Eq. (20).

It is interesting to compare the spectral function (19)
with that of strongly interacting fermions [11]. The latter
calculation, performed in the limit J 	 @!, shows the
same Gaussian peak as a function of q at small ! as the
expression (19) at� / J ! 0. In both cases the peak gives
the leading contribution to the density of states, obtained as

q integral of Aþ
# ðq;!Þ, resulting in 	ð!Þ / 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
! lnðD=!Þp

,

cf. [18,23]. In addition to the peak at q ¼ 0, the spectral
function of the fermion system shows weaker features at
the Fermi surface, q ¼ �kF, as well as the shadow-band
features at �3kF, �5kF, etc., with the Fermi momentum
kF ¼ �n=2. At J=! ! 0 the boson spectral function (19)
does not show any additional features. However, at ! &
J=@ we find a sequence of additional features at q ¼
�2�n, �4�n, etc.

To summarize, we have developed a new approach to
study the low-energy properties of a gas of one-
dimensional (iso)spin- 12 bosons with strong short-range

repulsion. Our method is based on the separation of density
and spin variables in the form (1) and (2) and the expres-
sion (16) for the boson annihilation operator. We applied
this technique to the calculation of the dynamic spin struc-
ture factor (11) and the spectral function (19). At small !
they both show Gaussian peaks as a function of q centered
at q ¼ 0, as well as sequences of additional features at q ¼
�2�n, �4�n, . . . . Although the spectral functions (11)
and (19) are obtained for the Tonks-Girargeau regime
(� � 1 and K ¼ 1), we expect similar additional features
away from this limit.
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